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One of the primary purposes of hydrologic models is to perform prediction using physical
relationships bounded by parameters and state variables. Much of the efforts in simulation-
based hydrologic-systems analysis have been primarily focused on (1) improved parameter
estimation methods that do not include state variables or (2) improved time-varying state
estimation with predetermined parameters. Although the parameters of a hydrologic model
can be estimated in a batch-processing scheme, there is no guarantee that model behavior
does not change over time; therefore model adjustment over time may be required. Addi-
tionally, due to the multiplicative nature of errors in forcing data and observation, it is pru-
dent to assemble the parameter adaption in the state evolution and forecasting system. The
need for the real time state-parameter estimation of hydrological models has been reported
in several studies (Todini et al., 1976;Kitanidis and Bras, 1980;Bras and Rodriguez-Iturbe,
1985; Young, 2002; Moradkhani et al., 2004). In this paper we extend the applicability of
ensemble Kalman filter (EnKF), a recursive Data Assimilation (DA) technique, with Monte
Carlo parameter smoothing to sequentially estimate model parameters and state variables.
The applicability and usefulness of the current algorithm is demonstrated for the streamflow
forecasting in Leaf River Watershed located north of Colins, Mississippi, using a conceptual
hydrologic model, HyMOD (Boyle, 2000). This methodology offers two additional features:
(1) the various sources of uncertainties can be properly addressed, including input, output
and parameter uncertainties, (2) unlike the batch calibration procedures; the algorithm is
recursive and therefore does not require storage of all past information.

Rcursive state-parameter estimation using EnKFData assimilation techniques have garnered
hydrologist’s attention with the potential to use real time observations to produce more accurate
hydrological forecasts. The basic objective of data assimilation is to characterize the system state
at some future time given initial state knowledge. EnKF, a Monte Carlo approach of Kalman fil-
ter proposed byEvensen(1994) and later clarified byBurgers et al.(1998), is a DA algorithm
suitable for nonlinear dynamic systems which uses a forecast model to integrate an ensemble of
model states from one update time to the next and employs ensemble-based covariances in the up-
date step to address the uncertainty in state estimation. To extend the applicability of the EnKF to
simultaneous state-parameter estimation, we need to treat the parameters similar to state variables.
Combined estimation can be provided by joint estimation where state and parameter vectors are
concatenated into a single joint state vector (state augmentation). An alternative approach to joint
estimation is dual estimation; designed as two interactive filters motivated either by the need to
estimate state from the model (parameters) or by the need to estimate the model from state (Morad-
khani et al., 2004). In combined estimation, parameter evolution needs to be set up artificially, i.e.,
it is assumed that the parameters follow a random walk. The drawback of such parameter sampling
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is the loss of information between time points resulting in posterior distribution of parameters that
are too diffuse comparing to the posteriors of fixed parameters (Liu, 2000). One remedy to this
problem is to use the Kernel smoothing of parameter samples introduced byWest(1993) wherein
the conditional evolution density of parameters is written as follows:

P(θt+1|θt)∼ N
(

θi−
t+1|aθi+

t +(1−a)θi+
,h2Vt

)
(5.1)

Where,θi+
t andθi−

t+1 are respectively the updated and forecasted parameter vectors ofith kernel at
time t andt +1, a is a factor ranging in 0.95∼ 0.99,Vt is the variance of normal kernels, andh is
the smoothing parameter.

The generic discrete-time nonlinear stochastic dynamic system and predictions in the EnKF frame-
work can be respectively expressed in the form of
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Wherexi+
t andxi−

t+1 are updated and forecasted state ensemble members at timet andt +1 respec-
tively. ui

t is the perturbed forcing data according toui
t = ut +ζi

t , ζi
t ∼ N(0,∑u

t ).

In the updating step, observationyt+1 needs to be perturbed in the amount ofηi
t+1, therefore

parameters are updated as follows:
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t+1

)
, ηi

t+1 ∼ N
(
0,σy

t+1

)
(5.4)

Where,Kθ
t+1 is the Kalman gain associated with the parameters (Moradkhani et al., 2004). Now

using the updated parameters, we regenerate the model state and prediction trajectories as follows:
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Model states ensemble is similarly updated as follows:
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WhereKx
t+1 is the Kalman gain associated with the state variables. The flowchart of dual state-

parameter estimation using EnKF with kernel smoothing of parameters is demonstrated in Fig-
ure 5.3.

Results and DiscussionThe applicability and usefulness of the dual EnKF on state-parameter
estimation of the conceptual Hydrologic MODel (HyMOD) described byBoyle(2000) was inves-
tigated (Figure 5.4). State variables in this system areS: storage in the nonlinear tank representing
the watershed soil moisture content,x1, x2 andx3: the quick-flow tank storages representing the
temporary (short-time) detentions, e.g., depression storages, andx4 as the slow-flow tank stor-
age (subsurface storage). Correspondingly parameters of this model areCmax, as the maximum
storage capacity within the watershed,bexp the degree of spatial variability of the soil moisture

192



CAHMDA-II workshop Session 5 Moradkhani

Generate the replicates of 
Perturbed observation 

 

Generate the replicates of 
Perturbed forcing data 

Obtain the parameter ensemble 
from Kernel density 

   t = t+1 

Obtain the model state 
Ensemble (state forecast) 

Obtain the model output ensemble
(Observation simulation) 

Update the model state ensemble 
using standard Kalman filter 

Obtain the model output ensemble 
(observation simulation) 

Update the parameter ensemble 

using standard Kalman filter 

Modify the model state ensemble 
using the updated parameter 

ensemble 

Initialize 

Figure 5.3: Dual state-parameter estimation flowchart using ensemble Kalman filter and kernel
smoothing of parameters.
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Figure 5.4: Hydrologic MODel (HyMOD) conceptualization.
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Figure 5.5: Time evolution of HyMOD model parameters for 3 years of dual ensemble filtering
in Leaf River Watershed. Shaded areas correspond to 95, 75, 66 and 10 percentile
confidence intervals.
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Figure 5.6: Results of the dual EnKF by application to the HyMOD, [a] Precipitation (forcing
data); [b] streamflow forecasting with 95% uncertainty range; [c] Soil moisture storage
variation (storage in the nonlinear tank of the HyMOD model). The solid line denotes
the mean ensemble prediction.
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capacity within the watershed,α, a factor for partitioning the flow between two series of tanks,
Rq andRs as the residence time parameters of quick-flow and slow-flow tanks respectively. The
system is initialized by defining the prior uncertainty range associated with the parameters and
state variables. Figure 5.5 displays the time evolution of HyMOD model parameters after dual
filtering for the water years of 1950–1953. As seen, quick flow tank parameterRq is the most
identifiable parameter by showing the fastest convergence with minimum degree of uncertainty
comparing to the others. In contrast, the maximum storage capacity of the watershed displayed
by Cmax, is less identifiable than the others and shows the slowest convergence. Ensemble time
variation of the key state variable,S, representing the watershed soil moisture content, along with
streamflow forecasting as predictive variable in the system are demonstrated in Figure 5.6. The
streamflow forecasting result is very consistent with the observation; as a result state estimation as
non-observable quantity shown in Figure 5.6 could be a reliable estimate.

In summary, the current algorithm introduces a number of novel features against the traditional
calibration schemes: (1) both model states and parameters can be estimated simultaneously, (2)
the algorithm is recursive and therefore does not require storage of all past information, as is the
case in the batch calibration procedures, (3) the various sources of uncertainties can be properly
addressed, including input, output and parameter uncertainties.
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