Phytoliths from Archaeological Sites in the Tropical Forest of Ituri, Democratic Republic of Congo

Julio Mercader
Department of Anthropology, George Washington University, 2110 G Street, NW, Washington, DC 20052
E-mail: madrid@gwu.edu

Freya Runge
Universitat Paderborn, FB1, Physische Geographie, D-33098, Paderborn, Germany
E-mail: arung@hrz.nw.uni-paderborn.de

Luc Vrydaghs
Laboratory of Palaeontology, Gent University, Krijgslaan, 281/58, B-9000; and Lab of Wood Biology and Xylarium, RMCA, B-3080, Tervuren, Belgium
E-mail: mphytor@africamuseum.be

Hughes Doutrelepont
Lab of Wood Biology and Xylarium, RMCA, B-3080, Tervuren, Belgium

Corneille E. N. Ewango
Cefrecof, P.O. Box 21285, Nairobi, Kenya; and Epulu via Bunia, Democratic Republic of Congo and

Jordi Juan-Tresserras
Departament de Prehistòria, Història Antiga i Arqueologia, Facultat de Geografia i Història, Universitat de Barcelona, Baldiri i Reixac, s/n Torre B, p. 11, E-08028, Barcelona, Spain
E-mail: Juan@trivium.gh.ub.es

Received November 17, 1999

INTRODUCTION

Paleoecological data and climate models indicate that lowland tropical forests underwent large climatic and vegetational changes during the Pleistocene (Kutzbach et al., 1998; Van der Kaars and Dam, 1995). However, such changes appear to have been more complex than the simple cycles of forest contraction and expansion resulting from climatic aridity that are proposed by refugial theory (Haffer, 1969; Hamilton, 1972). For example, some lowland forests contained species associations not seen today (Colinvaux et al., 1996; Maley and Brenac, 1998), such as admixtures of evergreen lowland taxa with montane elements and trees characteristic of seasonal formations. Seasonal forests, for their part, were replaced by mixtures of savanna and thorny scrub vegetation (Van der Hammen and Absy, 1994). These changes were brought about by both sig-
nificantly cooler and drier climates and, perhaps, by markedly reduced CO₂ (Jolly et al., 1998). Plant physiological adaptations to low CO₂ (Cowling, 1999) suggest that late glacial maximum tree taxa would produce smaller leaves and, thus, promote tropical forests with a more open canopy and concomitant increase in grasses.

This paper applies phytolith analysis to the forested core of the African continent using phytoliths from three Later Stone Age archaeological sites (>18,800 ± 100 ¹⁴C yr B.P. to <715 ± 45 ¹⁴C yr B.P.) located in the Ituri rain forest, Democratic Republic of Congo. In Africa, phytolith analysis has been used for paleoenvironmental reconstruction in Senegal, People’s Republic of Congo, Kenya, and Ethiopia (Alexandre et al., 1997; Mworia-Maitima, 1997; Barboni et al., 1999). These studies show that phytolith data from lake cores and archaeological sites record both regional and local variations in climate and vegetation in the grassland belt. The aim of this paper is to show the various types of environmental contexts in which ancient Homo sapiens colonized the Congo Basin during the late Pleistocene and the Holocene. Some authors have questioned whether humans could have survived in tropical forests without engaging in agriculture (Bailey et al., 1989). Our work suggests that the northeastern Congo Basin was forested when it was settled by humans in the late Pleistocene and that the region remained settled while its forest changed in structure and composition thereafter.

SETTING

The Ituri region is located in the northeast corner of the Guineo-Congolian tropical forest of central Africa (White, 1983), just north of the equator (Fig. 1). In the Ituri region, between the Western Rift and the Congo Basin, are hilly granitic uplands of the north and east, and plains of the center, south, and west. Altitudes range from 1000 m for the highest uplands in the east to 600 m for the plains to the west. The sites studied are 700–800 m above sea level.

Although little rain falls in January and February, an annual rainfall of 1600–1900 mm (Bultot, 1971) allows most of the Ituri district to support evergreen and semievergreen forests. Some of the forests are dominated by one taxon, while others are mixed (Hart, 1985). In the monodominant forests, common in the south and west, Gilbertiodendron dewevrei accounts for more than 90% of the canopy. In mixed forests, scattered through the region, no single species forms more than 40% of the canopy. In the Ituri district, monodominant forests have far fewer species per hectare (10) than do mixed forests (53) (Hart and Hart, 1986). Evergreen species make up 94% in monodominant forests and 86% in mixed environments (Hart and Hart, personal communication, 1995). The most common species of trees in the lowland rain forest of Ituri are Gilbertiodendron dewevrei (Caesalpiniaceae), Cynometra alexandrii (Caesalpiniaceae), Julbernardia seretii (Caesalpiniaceae), Klainedoxa gabonesis (Irvingiaceae), Cleistanthus michelsonii (Euphorbiaceae), Erythrophleum suaveolens (Caesalpiniaceae), Fagara macrophylla (Rutaceae), and Canarium schweinfurthii (Burseraceae). The most common herbaceous family is the Marantaceae (T. Hart and C. Ewango, personal communication).

The Ituri forest occupies a granitic domain (Lavreau, 1982) shaped in part by neotectonics from the neighboring Rift. Grabens, inselbergs, and tors are common in that section of the forest nearest the Rift, as are boulders and rock shelters of granitoid rocks (Fig. 2) (González, 1997). The shelters, which have attracted repeated human occupation, developed either near inselberg peaks or on hill slopes. Located in outcrops 10 to 15 m, the caves have their mouths randomly oriented, with variable light and temperature conditions and enclosed habitable spaces (average: 51.9 m²), including dry and wet areas. The geochemistry of the cave deposits in which phytoliths were found is described by Mercader (2000).

ARCHAEOLOGY AND CHRONOLOGY

Archaeological surveys in the lowland forest of Ituri identified over 50 archaeological sites in just 8.5 km² (Mercader, 1997). This density of sites suggests that the Ituri forest was settled extensively during prehistoric times. Ten rock shelter sites were excavated, over a period of 12 months, with up to 2 m² excavated per shelter. The results indicate that by the last glacial maximum prehistoric Later Stone Age foragers had settled tropical forest environments. Occupation of diverse habitats continued throughout the Holocene, many millennia before the first archaeological indications of the appearance of farming in the region (Mercader et al., 2000).

Radiometric AMS dating (Table 1) suggests that human occupation in this sector of the Congo Basin had already taken place by 18,800 ± 100 ¹⁴C yr B.P., before the last glacial maximum (LGM). Additional ages (10,530 ± 50 ¹⁴C yr B.P.; 10,015 ± 55 ¹⁴C yr B.P.) show that approximately 8000 years later, by the start of the Holocene, forager groups continued to settle the Ituri region. Hunter-gatherer groups were still present in the area in the middle Holocene (6025 ± 70 ¹⁴C yr B.P.; 2970 ± 70 ¹⁴C yr B.P.) and in the late Holocene (1080 ± 41 ¹⁴C yr B.P.; 971 ± 33 ¹⁴C yr B.P.; 840 ± 70 ¹⁴C yr B.P.; 825 ± 30 ¹⁴C yr B.P.; 813 ± 35 ¹⁴C yr B.P.; 715 ± 45 ¹⁴C yr B.P.).

Among ten excavated sites, three were selected for phytolith analysis: Matangai Turu NW (northern Ituri), Makubasi NW (eastern Ituri), and Lengbe (central Ituri) (Figs. 1 and 2). The oldest direct date available in a site for which phytolith analysis was carried out is 10,530 ± 50 ¹⁴C yr B.P., obtained on charcoal from a depth of 1.25 m from the site of Matangai Turu NW. Because this layer is underlain by 0.9 m of cultural deposits that contain chipped stone representative of the Later Stone Age, and because major changes in the Matangai Turu NW paleoenvironmental assemblages occur just below this culturally dated stratrum, we infer that the basal layers of this site are no younger than the LGM.
FIELD AND LABORATORY PROCEDURES

Archaeological sediment for phytolith analysis was recovered, depending on feasibility, either by scraping sediments out into a plastic bag or by inserting an aluminum frame into excavation unit walls. Spacing between samples was 10–15 cm and soil boundaries were avoided. Sample weight averaged 250 g. The volume of one sampling unit was 10 cm by 10 cm in area and 5 cm deep, a standard volume of sediment in archaeology.

To sample the modern “phytolith rain,” we collected topsoil from directly underneath tropical forest plots of known species composition (identifications by T. Hart; see Mercader, 2000). Two transect areas, each 500 m by 200 m, were placed in monodominant (Lenda 1) and mixed (Edoro/Afarama 1) forests. Each such area was divided into 250 units of 20 m by 20 m. Out of a total of 500 units available for the survey, 10 units (2% of the total) were chosen for their typical floristical composition. Spacing between units was 40 m. Five individual soil samples were collected at 5-m intervals along the southern or northern side of each of the 10 units chosen. Samples were retrieved from the uppermost part of the A horizon; after removal of surface litter, a soil area of 10 cm by 10 cm by 5 cm depth was sampled. It is likely that topsoil samples contain phytolith palimpsests from multiple successional phases in the late Holocene, when tropical rain forests persisted in the area in which samples were collected (Hart et al., 1996).

We used four steps to extract the phytoliths: (1) Deflocculation of 10–50 g dry soil material in tetrasodium diphosphate decahydrate (Na₄P₂O₇·H₂O) in 1 liter of distilled water, placed in an automatic shaker overnight, then washed in distilled water and dried. (2) Separation of sand (63–2000 μm) by wet sieving; removal of clay (<2 μm) and fine and middle silt (2–20 μm), and coarse silt (20–63 μm) by gravity sedimentation; and drying. (3) Removal of organic matter after heating in a sand bath in 30% solution of H₂O₂; washing in distilled water; drying. (4) Phytolith extraction from the sand and silt fractions in a solution of ZnBr₂, HCl, and distilled water (specific gravity 2.3) centrifuged at 1000 rpm for 10 min.

FIG. 1. Map of the study area, showing the extent of central African lowland forest, the Congo Basin, and the Western Rift. The Ituri region shows the forest–savanna border, the geographical distribution of mixed and monodominant forests, and the archaeological sites mentioned in this paper.
Phytoliths were identified at magnifications ranging from $400 \times$ to $1000 \times$ (Zeiss standard light microscope). Opal phytoliths from the sand and silt fractions were counted separately. The number of silt-sized phytoliths per sample studied averaged 120 (range 50–250). The sand fraction commonly contained fewer phytoliths, so that all found on the slide were counted. Phytoliths were identified by comparison with a reference collection of tropical African plants comprising more than 200 species (Runge, 1999). We also consulted catalogs from 2000 species of neotropical plants studied by Piperno and more than 400 species of Southeast Asian plants studied by Kealhofer and Piperno (1998).

Radiometric AMS dates were obtained from charcoal, endocarp, and human bone by four different labs, Utrecht (Holland), Beta (USA), Arizona (USA), and NOSAMS (USA). All charcoal dates relevant to this study were obtained from single samples no more than 2 mm in diameter. No bulk samples were dated.

RESULTS

Present-Day Phytoliths from the Ituri Forest

Phytolith assemblages from soils of the modern Ituri forest (Fig. 3) contain many (40–70%) silt-sized spherical phytoliths (morphotype B), many elongate phytoliths (A4), and few short-cell phytoliths (1–6%) (Alexandre et al., 1997).

Morphotype A comprises elongate phytoliths (Figs. 4a and 4b) mostly produced by trees and shrubs. Morphotype B (Figs. 4c and 4d) is made up of spherical bodies that appear to originate mainly from wood, seeds, and leaves of dicots. Morphotype C (Fig. 4f) is an irregular phytolith of unknown origin.
with a distinctive, stippled surface. This stippled phytolith is represented in very high frequencies (62%) in modern monodominant *Gilbertiodendron* forests and has lower representation (5%) in mixed forests. Morphotype D (Figs. 4g and 4h), made up of specific hexagonal and hat bodies, is more common in mixed than in monodominant forests. Morphotypes E and F (Figs. 4j, 4k, and 4l) are not diagnostic, except for F4. These can be produced by both monocots and dicots. Morphotype G2, subtype 1 (Fig. 4i), comprises the distinctive bulliform cell phytolith produced only in the Poaceae. These and other Poaceae phytoliths are scarce in the modern profiles from the Ituri forest.

Ancient Phytoliths from Archaeological Sites of the Ituri Region

Matangai Turu NW (Malembi). Phytoliths from grasses (e.g., Poaceae, morphotype G2-1) are most common in strata deposited before 10,530 14C yr B.P. (Fig. 5). In contrast, phytoliths from rain forest trees and herbs (category D1) increase greatly during the Holocene, reaching their maximum values in the last 2000 14C yr B.P. Some types of phytoliths derived from trees (category B) are most abundant in the Holocene but are present throughout the sequence. Category C, another arboreal indicator, is common during both the late Pleistocene and the Holocene.

Makubasi NW (Nduye). Arboreal phytoliths characterize this sequence, which may be entirely Holocene (Fig. 6). The sequence lacks major variations in the phytolith assemblage. The morphotypes include arboreal (B, C, and D) and herbaceous (e.g., D1) plants typical of rain forest environments.

Lengbe (Epulu). The late Holocene sequence of Lengbe spans the last 3000 14C yr B.P. As with the sequence from Makubasi NW, its main feature is the dominance of phytoliths typical of rain forests (Fig. 7). Changes in forest composition during the Holocene may be indicated by phytolith C1, from unknown trees, which is present low in the sequence, disappears in the middle of the sequence, and reappears near the top of the sequence. Phytoliths C3, D, and F peak during the last millennium.

Although all sites suggest diachronic changes in plant use and, perhaps, in local forest composition, only Matangai Turu NW, the sole site with evidence for late Pleistocene through early Holocene human occupation, shows abrupt changes in tree–grass ratios (Table 2). Sample IV, dated to 10,530 14C yr B.P., contains more arboreal phytoliths and fewer grass phytoliths than do samples from underlying deposits.

Discussion

Phytolith Representation, Source Area, and Identification

Phytoliths generally abound at all the sites examined (Mercader, 2000). They appear to come from a diverse set of plants and plant structures (e.g., tree and herbaceous seeds, tree and herbaceous leaves, bark, woods). Phytoliths consistently present include those from the Annonaceae, Burseraceae, and Marantaceae. Poaceae phytoliths are also well represented at all sites, and the Poaceae phytoliths are abundant in “modern” sediments in the region’s forests. Such phytoliths include type C1 and C2, which are also common in tropical forests of central and south America (Piperno and Becker, 1996; Piperno, 1998).

In cave sediments of equatorial regions, most phytoliths represent local and in situ deposition, as dense vegetation prevents long-distance transport by wind. Anthropogenic materials (e.g., foodstuffs, thatching material, sleeping mattresses, medicinal and ritual plants, leaves brought in with branches

Note. MSE, Makubasi southeast; MTNW, Matangai Turu northwest; IBSW, Isak Baite southwest; WGE, Wataka Gitatu east; L, Lengbe; MNW o., Makubasi northwest outer cave.

Table 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Lab no.</th>
<th>Archaeological level</th>
<th>Material dated</th>
<th>Age (14C yr B.P.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>Os-21250</td>
<td>basal</td>
<td>1 mm charcoal</td>
<td>18,800 ± 100</td>
</tr>
<tr>
<td>MTNW</td>
<td>UC Nr5075</td>
<td>2</td>
<td><1 mm charcoal</td>
<td>10,530 ± 50</td>
</tr>
<tr>
<td>IBSW</td>
<td>AA33225</td>
<td>basal</td>
<td>endocarp of Canarium schweinfurthii</td>
<td>10,015 ± 55</td>
</tr>
<tr>
<td>WGE</td>
<td>AA 33226</td>
<td>basal</td>
<td>1 mm charcoal</td>
<td>6025 ± 70</td>
</tr>
<tr>
<td>L</td>
<td>Beta 127079</td>
<td>1</td>
<td>endocarp of Canarium schweinfurthii</td>
<td>2970 ± 70</td>
</tr>
<tr>
<td>MNW o.</td>
<td>UC Nr 5076</td>
<td>3</td>
<td>2 mm charcoal</td>
<td>1080 ± 41</td>
</tr>
<tr>
<td>MNW o.</td>
<td>Os-22251</td>
<td>3</td>
<td>2 mm charcoal</td>
<td>1010 ± 60</td>
</tr>
<tr>
<td>MNW o.</td>
<td>UC Nr 5077</td>
<td>3</td>
<td>2 mm charcoal</td>
<td>971 ± 33</td>
</tr>
<tr>
<td>L</td>
<td>Beta 127078</td>
<td>1</td>
<td>endocarp of Elaeis guineensis</td>
<td>840 ± 70</td>
</tr>
<tr>
<td>MTNW</td>
<td>Os-21235</td>
<td>5</td>
<td>endocarp of Canarium schweinfurthii</td>
<td>825 ± 30</td>
</tr>
<tr>
<td>MTNW</td>
<td>UC Nr 5074</td>
<td>5</td>
<td>several 1- to 5-mm fragments of human bone</td>
<td>813 ± 35</td>
</tr>
<tr>
<td>MTNW</td>
<td>Os-21251</td>
<td>5</td>
<td>2 mm charcoal</td>
<td>715 ± 45</td>
</tr>
</tbody>
</table>

Note. MSE, Makubasi southeast; MTNW, Matangai Turu northwest; IBSW, Isak Baite southwest; WGE, Wataka Gitatu east; L, Lengbe; MNW o., Makubasi northwest outer cave.
collected for firewood) and colluvial influx (including plant material growing and decomposing around the rock shelter brought in through the sides of the caves by rain wash) likely account for the great majority of phytoliths present at Matangai Turu NW, Makubasi NW, and Lengbe. Today, in the Ituri forest, plants are collected by women within 0.1–4 km of their camps (Ichikawa, 1992; Bailey, 1991). Ancient tropical forest foragers probably gathered their plant resources from similarly nearby places. It is likely, therefore, that phytoliths represent the plants and the environments that people exploited within several kilometers of rock shelters.

The modern and fossil phytoliths presented here provide direct and indirect evidence for late Pleistocene and Holocene occupation of variably dense tropical forests of the northeast Congo basin by prehistoric Later Stone Age foragers. Phytolith morphotypes A, B, C, and D may emanate largely from forest taxa. Morphotype A comprises elongate phytoliths mostly produced by trees and shrubs. It comes from various vegetal structures, particularly leaves (Piperno, 1988; Postek, 1981). Morphotype B is made up of spherical rugose bodies which appear to derive mainly from wood, seeds, and leaves of dicots. It is the most common type of phytolith found in tropical forests, including those of Central and South America and Southeast Asia (Piperno, 1993, 1998; Kealhofer and Piperno, 1998; Runge, 1999). Significantly, spherical rugose phytoliths from dicots are scarce in phytolith assemblages from modern tropical savanna and steppe environments (Barboni et al., 1999; Alexandre et al., 1997). Morphotype C is a phytolith of unknown origin with a distinctive, stippled surface. C1 is produced by several tree taxa and is found in large quantities in modern soils of Amazonian forests (Piperno and Becker, 1996) but never in phytolith assemblages from modern tropical savannas of Africa (cf. Alexandre et al., 1997; Mworia-Maitima, 1997; Barboni et al., 1999) or America (Piperno, 1988, 1998). In the Ituri forest, however, C1 may indicate a monodominant *Gilbertiodendron* stand. Morphotype D abounds in mixed forests and belongs to the Marantaceae, perhaps to the Burseraceae. Therefore this phytolith type is a potential indicator of a closed canopy. In contrast, Poaceae phytoliths are scarce in the modern profiles from the Ituri forest, reflecting their low occurrence in the shady understory of this habitat today.

FIG. 3. Phytolith assemblages from modern mixed tropical rain forest (Edoro-Afarama), Epulu, Central Ituri, and modern *Gilbertiodendron* monodominant forest (Lenda), Epulu, Central Ituri.
FIG. 4. (a) Modern sample from mixed forest, Central Ituri. Type A4; elongate body with facets; silicified terminal tracheid. Length 154 μm (scale bar: 20 μm). (b) Archaeological sample from Lengbe I. Type A3; elongate phytolith with a nearly smooth surface and edges along the body. Length 166 μm (scale bar: 20 μm). (c) Modern sample from *Gilbertiodendron* monodominant forest, Central Ituri. Types B1 and B2. Examples of dicot and monocot sphericals with smooth and rough surfaces. Diameter: 8–20 μm (scale bar: 20 μm). (d) Archaeological sample from Matangai Turu NW VII. Type B4; nearly spherical phytolith with facets. Size 70 × 57 μm (scale bar: 20 μm). (e) Palm phytolith. Diameter: 46 μm (scale bar: 20 μm). Reprinted with permission of Elsevier. (f) Modern sample from *Gilbertiodendron* monodominant forest, Central Ituri. Type C1; irregularly shaped phytolith with a stippled surface. Length 100 μm (scale bar: 20 μm). (g) Modern sample from *Gilbertiodendron* monodominant forest, Central Ituri. Type D1, subtype 1; shape variation with a round apex; length 60 μm, breadth 52 μm (scale bar: 20 μm). (h) Archaeological sample from Matangai Turu NW VII. Type D1, subtype 1. Diameter ca. 80 μm (scale bar: 20 μm). Perhaps a fruit-seed phytolith from the Marantaceae. (i) Archaeological sample from Matangai Turu I. Type G2, subtype 1; fan-shaped bulliform phytoliths from Poaceae (Paniceae?); 23, length 56 μm; 24, length 55 μm; 25, length 66 μm (scale bar: 20 μm). (j) Modern sample from mixed forest, Central Ituri. Type D2; specific phytolith, “head” and “body” with outgrowths. Possible origin: *Marantaceae* seeds. Length 126 μm (scale bar: 20 μm). (k) Modern sample from mixed forest, Central Ituri. Type E1; platelet with alternating amber-colored and opaque stripes, regular perforations occur in the amber-colored stripes only. Possible origin: achene epidermis of *Compositae* (scale bar: 20 μm). (l) Modern sample from mixed forest, Central Ituri. Type F4; strong silicified tissue; thick and irregularly rough; composed of puzzle-piece-shaped cells (scale bar: 20 μm).
Paleoenvironmental Changes

At present, few paleoenvironmental data are available from the lowland evergreen forests of the Congo’s watershed. Reconstructions of Quaternary environments are based on data from lakes located in mosaic areas (Elenga et al., 1994), the far northwestern corner of the central African forest at its transition to the West African domain (Maley and Brenac, 1998), and West Africa (Talbot and Johannessen, 1992). Other contexts include pollen data from the neighboring Western Rift (Sowunmi, 1991; Bergonzini et al., 1997; Marchant et al., 1997), cave pollen from savanna–forest mosaic environments in their transition to both Western Rift savannas and the

![Image of phytolith assemblage](https://example.com/fig5.png)

FIG. 5. Opal phytolith assemblage from archaeological site Matangai Turu NW, Northern Ituri. “No data” means small numbers of sand-sized phytoliths.

![Image of phytolith assemblage](https://example.com/fig6.png)

FIG. 6. Opal phytolith assemblage from archaeological site Makubasi NWo., Eastern Ituri.
montane belt (Brook et al., 1990), and paleoenvironmental interpretations of pedogenesis in “stone-lines” (Runge, 1995). The climate and vegetation records studied by these authors support the idea that major dry and cool periods occurred during the last glaciation, between 22,000 and 10,500 \(^{14}C\) yr B.P. (Talbot and Johannessen, 1992). During dry and cool intervals of the late Pleistocene, tropical forest formations probably retreated and intermixed with savannas (Elenga et al., 1994), gave way to open environments (Brook et al., 1990; Sowunmi, 1991; Runge, 1995), or interfingered with montane elements (Maley and Brenac, 1998; Marchant et al., 1997). But in other cases humid and cool environments may have supported forested landscapes, as shown by Jahns et al. (1998) and this study, with open canopies, abundant shrubs, and more forest herbs and grasses.

As for Pleistocene phytolith assemblages from Ituri, the forest cover appears to have been reduced during the last glacial cycle, but not enough to convert tropical forest to grassland. Dumbbell, cross, polylobate, and saddle phytolith morphologies from Panicoid and Chloridoid C\(_4\) grasses sug-

![FIG. 7. Opal phytolith assemblage from archaeological site Lengbe, Central Ituri. “No data” means small numbers of sand-sized phytoliths.](image)

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance of Phytoliths (Percentages)</td>
</tr>
<tr>
<td>Sample no.</td>
</tr>
<tr>
<td>MTNW VII</td>
</tr>
<tr>
<td>MTNW VI</td>
</tr>
<tr>
<td>MTNW V</td>
</tr>
<tr>
<td>MTNW IV</td>
</tr>
<tr>
<td>MTNW III</td>
</tr>
<tr>
<td>MTNW II</td>
</tr>
<tr>
<td>MTNW I</td>
</tr>
<tr>
<td>MNW o. V</td>
</tr>
<tr>
<td>MNW o. IV</td>
</tr>
<tr>
<td>MNW o. III</td>
</tr>
<tr>
<td>MNW o. II</td>
</tr>
<tr>
<td>MNW o. I</td>
</tr>
<tr>
<td>L V</td>
</tr>
<tr>
<td>L IV</td>
</tr>
<tr>
<td>L III</td>
</tr>
<tr>
<td>L I</td>
</tr>
<tr>
<td>L</td>
</tr>
</tbody>
</table>

Note. MTNW, Matangai Turu northwest; MNW o., Makubasi northwest, outer cave; L, Lengbe.
gestive of savannas are rare in the Pleistocene phytolith assem-
blages from the Ituri region. Indeed, the presence of this type
of aridity marker in the Ituri assemblages is very low (5–10%,
Figs. 5–7, Table 2), while they largely abound (22–40%;
Alexandre et al., 1997) in the phytolith assemblages from
the savannas and forest–savanna mosaics of the Guineo-Congolian
region (Alexandre et al., 1997). These changes suggest that the
Pleistocene to Holocene transition in the area was marked by
a shift to a denser forest cover. Nevertheless, because arboreal
taxa are represented throughout the sequence, the Ituri low-
lands probably remained forested during the final millennia of
the late Pleistocene. Perhaps the forests contained a dense
understory of many shrubs and herbaceous plants. Such con-
tions are predicted by models of vegetational changes that
consider the effects on plant growth of lower atmospheric CO₂
(e.g., Cowling, 1999). The decrease in phytolith occurrence per
unit of a silt fraction suggests fewer occupation episodes or
scarcer use of plants by Pleistocene foragers. The variability in
the Holocene phytolith assemblages, on the other hand, may
reflect food gathering and processing at the rock shelters,
changing spatial distribution of plant resources in this part of
the Ituri region, or changes in forest composition due to cli-
matic factors that altered the abundance and distribution of
plant resources available for exploitation. Tropical forest com-
munities were not stable even after the vegetational rearrange-
ments that marked the close of the Pleistocene. In fact, modern
climate and vegetation patterns in central Africa were estab-
lished only after 3,000 ¹⁴C yr B.P. (Elenga et al., 1994; Hart et
al., 1996; Jolly et al., 1998; Maley and Brenac, 1998), perhaps
even centuries ago (Alexandre et al., 1997, p. 226).

Our phytolith analysis also suggests that the spatial bound-
aries between forest and grasslands, as shown in the paleogeog-
ographical depiction of the northeastern Congo “refugium” or
“core area” (Hamilton, 1972), should be reconsidered. During
the LGM the core area may have consisted of heterogenous
vegetational formations, including forests (Ituri), mosaics of
forests and grasslands (Matupi Cave: Van Noten, 1977; Brook
et al., 1990), and, perhaps, parkland environments (Runge,
1995), rather than a homogenous forest block. This diversity
implies that proposed areas of forest refugia probably should
not be depicted as monolithic havens in space and time, or as
stable zones unaffected by a dryer and cooler late glacial
maximum.

As for the antiquity of human colonization in Ituri, phytolith
and archaeological data indicate that Later Stone Age African
foragers lived in and exploited plant resources of the tropical
forest (Mercader, 1997) by perhaps 19,000 ¹⁴C yr B.P.

ACKNOWLEDGMENTS

We thank the Spanish Ministry of Education and Culture for funds, R.
Bailey and the Department of Anthropology at George Washington University
for support and guidance, R. Marti, O. Carreras, I. Gonzalez, and J. Guerrero
for help with field work, and T. Hart, J. Hart, A. Brooks, D. Piperno, L.
Kealhofer, J. Runge, and J. Maley for discussions.

REFERENCES

Phytoliths: Indicators of grassland dynamics during the Late Holocene in
intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology

Zaire, Anthropological Paper 86, Museum of Anthropology, University of
Michigan, Ann Arbor.

Bailey, R., Head, G., Jenike, M., Owen, B., Rechtman, R., and Zechenter, E.
(1989). Hunting and gathering in tropical rain forest: Is it possible? Amer-
ican Anthropologist 91, 59–82.

as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia.
Palaeogeography, Palaeoclimatology, Palaeoecology 152, 87–100.

Bergonzini, L., Chalie, F., and Gasse, F. (1997). Paleovegetation and paleo-
precipitation in the Tanganyika Basin at 18,000 years B.P. inferred from
hydrologic and vegetation proxies. Quaternary Research 47, 295–305.

Ituri, Zaire, from sediments in Matupi Cave, Mount Hoyo. In “Evolution of
Environments and Hominidae in the African Western Rift Valley” (N. Boaz,

du Bassin Congo-Brazzaville.

long pollen record from lowland Amazonia: Forest and cooling in glacial

Cowling, S. (1999). Simulated effects of low atmospheric CO₂ on structure
and composition of North American vegetation at the Last Glacial Maximum.
Global Ecology and Biogeography 8, 81–93.

Quaternary vegetation and inferred climate changes in Congo. Palaeogeog-
raphy, Palaeoclimatology, Palaeoecology 109, 345–356.

“Bajo el Techo Forestal. La Evolución del Poblamiento en el Bosque del
Ituri, Zaire” (J. Mercader, unpublished Ph.D. thesis, Universidad Com-

Hamilton, A. (1972). The significance of patterns of distribution shown by
forest plants and animals in tropical Africa for the reconstruction of Upper

Lansing.

Hart, T., and Hart, J. (1986). The ecological basis of hunter-gatherer subsis-
tence in African rain forests: The Mbuti of eastern Zaire. Human Ecology
14, 29–55.

Changes in forest composition over the last 4000 years in the Ituri Basin,
Zaire. In “The Biodiversity of African Plants” (L. J. G. van der Maesen,
X. M. van der Burgt, and J. M. van Medenback de Kooi, Eds.), pp.

Ichikawa, M. (1992). Traditional use of tropical rain forest by the Mbutsi
hunter-gatherers in central Africa. In “Topics in Primatology” (N. Itoigawa,

of west equatorial Africa based on a marine pollen record off Liberia (site

